Uncertainty Quantification in Estimation of Civil Infrastructure System Performance

SCHOOL

0

ENGI

Masanobu Shinozuka University of California, Irvine

Opportunities and Challenges in Uncertainty Quantification for Complex Interacting systems University of Southern California April 12-14, 2009 Sources of Uncertainty

Models of Infrastructure system

Hazard Models: Where, When, How

Natural Hazards Earthquake, Tsunami, Flood, Scouring, Hurricane, Wildfire, Drought

Technological Hazards Industrial Accidents

Manmade Hazards Terrorist attack

Pragmatic Objective

- Identify the contributing factors that influence the performance of infrastructure systems.
- Minimize the level of the uncertainty involved in these factors through the research,
- And maximize the system performance

System Performance

- Robustness
- Resilience
- Sustainability
 - Complexity

System Interaction and Interdependency Definition depends on stake holders

1995 Kobe Earthquake

Loss estimated at \$150 billion (\$100 billion in infrastructure and \$50 billion in economic disruption"). http://www.rms.com/Publications/KobeRetro.pdf

5

Resilience and Sustainability

of Kobe Port

Container traffic

TEU = Twenty-foot Equivalent Unit

Source: Containerization International Yearbook

Electric Power Transmission Network

Water Delivery Network

INTEGRATED WATER AND POWER SYSTEM

MLGW Water Supply Stations & Booster Pumps On the Electric Service Area

Los Angeles Department of Water and Power's Electric Power Transmission system

Part of Western Electricity Coordination Council's (WECC's) network covering 14 US western states, 2 Canadian provinces and northern part of Baja California

6,300 MW at a typical peak hour for a population of 3.7 million

8

One line diagram of a receiving station

Circuit Breakers

Bus

Disconnect Switches

Models for Substation and Nodes

Substation and Nodes

47 Scenario Earthquakes Representing Regional Seismic Hazard

EQ Scenario	Scenario EQ	Typea)	Magnitude	Annual PB	Lat.	Long.
1	Elysian Park	MCE	7.1	0.0007	34.165	-117.833
2	Malibu Coast	MCE	7.3	0.0001	34.007	-118.615
3	Newport-Inglewood(N.)	MCE	7.0	0.0005	33.975	-118.359
4	Newport-Inglewood(S.)	MCE	7.0	0.0005	33.660	-117.997
5	Palos Verdes	MCE	7.2	0.0015	33.618	-118.170
6	Raymond	MCE	6.7	0.0007	34.127	-118.120
7	San Andreas	MCE	8.0	0.0049	34.278	-117.477
8	San Jacinto	MCE	7.5	0.0008	33.882	-117.087
9	Santa Susana	MCE	6.9	0.0044	34.318	-118.599
10	Sierra Madre	MCE	7.4	0.0021	34.143	-117.936
11	Simi Santa Rosa	MCE	7.5	0.0002	34.282	-118.822
12	Verdugo	MCE	6.8	0.0006	34.184	-118.273
13	Whittier	MCE	7.5	0.0003	33.643	-117.348

Maximum Credible Earthquakes

Scenario Earthquakes Representing Regional Seismic Hazard (Cont'd)

14	Malibu Coast	U/D	6.0	0.0003	34.140	-118.042
15	Malibu Coast	U/D	6.0	0.0005	34.116	-118.158
16	Malibu Coast	U/D	6.0	0.0003	34.094	-118.372
17	Newport-Inglewood	U/D	6.0	0.0010	33.896	-118.269
18	Newport-Inglewood	U/D	6.0	0.0010	34.008	-118.374
19	Newport-Inglewood	U/D	6.0	0.0010	33.817	-118.197
20	Newport-Inglewood	U/D	6.0	0.0010	33.737	-118.079
21	Newport-Inglewood	U/D	6.0	0.0010	33.645	-117.955
22	Palos Verdes	U/D	6.0	0.0016	33.778	-118.315
23	San Andreas	U/D	6.0	0.0200	34.431	-117.815
24	San Andreas	U/D	6.0	0.0200	34.627	-118.319
25	San Jacinto	U/D	6.0	0.0100	34.263	-117.499
26	Santa Susana	U/D	6.0	0.0100	34.328	-118.607
27	San Fernando	U/D	6.0	0.0050	34.294	-118.468
28	Sierra Madre	U/D	6.0	0.0100	34.256	-118.254
29	Sierra Madre	U/D	6.0	0.0100	34.161	-117.920
30	Whittier	U/D	6.0	0.0015	33.957	-117.907

User Defined Earthquakes

14

Scenario Earthquakes Representing Regional Seismic Hazard (Cont'd)

Malibu Coast U/D 6.5 0.0002 34.143 -118.122 Malibu Coast U/D 6.5 0.0002 34.109 -118.073

31	Malibu Coast	U/D	6.5	0.0002	34.143	-118.122
32	Malibu Coast	U/D	6.5	0.0002	34.109	-118.073
33	Malibu Coast	U/D	6.5	0.0001	34.092	-118.380
34	Newport-Inglewood	U/D	6.5	0.0005	33.940	-118.319
35	Newport-Inglewood	U/D	6.5	0.0005	33.790	-118.146
36	Newport-Inglewood	U/D	6.5	0.0005	33.656	-117.959
37	San Andreas	U/D	6.5	0.0080	34.594	-118.205
38	San Andreas	U/D	6.5	0.0080	34.439	-117.839
39	San Jacinto	U/D	6.5	0.0050	34.230	-117.454
40	Santa Susana	U/D	6.5	0.0011	34.297	-118.423
41	Whittier	U/D	6.5	0.0010	33.924	-117.841
42	Malibu Coast	U/D	7.0	0.0001	34.065	-118.456
43	Malibu Coast	U/D	7.0	0.0001	34.123	-118.157
44	San Jacinto	U/D	7.0	0.0015	34.237	-117.463
45	San Andreas	U/D	7.0	0.0030	34.573	-118.179
46	San Andreas	U/D	7.0	0.0030	34.403	-117.732
47	Whittier	U/D	7.0	0.0005	33.940	-117.884

Probabilistic scenario earthquakes are developed to represent regional seismic hazard consistent with USGS estimation

- Probabilistic Scenario Earthquake Set of 47 Earthquakes
- Hazard Curve is averaged over 4 empirical attenuation relationships Sadigh (1997); Abrahamson (1997); Campbell (2003); Boore (1997)

Not considered in previous studies

-118⁰ Grid Sites in Study Region

Hazard Comparison at Site 12

Newport-Inglewood (S) Earthquake (MCE=7.0)

Equipment Damage Information

Substation Name	Xmers	CBs	DSs	Substation Name	Xmers	CBs	DSs
RINALDI	0	2	2	GOULD	0	2	2
SYLMAR	0	1	3	GOODRICH	0	2	2
NORTHRIDGE(STA_J)	0	3	3	MESA	0	3	2
TARZANA9STA_U)	0	2	6	LAGUNA_BELL	1	1	7
OLYMPIC(STA_K)	0	3	2	LIGHTHIPE	2	2	14
SCATTERGOOD	0	3	4	LA_FRESA	2	2	14
AIRPORT(STA_N)	0	3	2	REDONDO_BEACH	0	1	10
FAIRFAX(STA_D)	0	1	3	EL_NIDO	0	3	9
HOLLYWOOD(STA_H)	0	3	5	EL_SEGUNDO	0	2	6
TOLUCA(STA_E)	0	2	3	LA_CIENEGA	0	2	5
VALLEY	0	1	3	HILSON	2	5	29
GLENDALE(AIR_WAY)	0	2	2	ARCO	4	5	25
ATWATER(STA_G)	0	2	1	HORBORGEN	1	2	8
ST.JOHN(STA_A)	0	1	2	LONG_BEACH	7	10	45
RIVER	0	1	5	DEL_AMO	0	3	17
VELASCO(STA_F)	0	1	10	CENTER	0	2	5
CENTURY(STA_B)	0	2	7	ALAMITOS	5	2	22
GRAMERCY	0	2	9	WALNUT	0	2	4
TAP1&TAP2	0	2	6	RIO_HONDO	0	2	3
HALLADLE	0	1	3	VINCENT	0	1	1
WILLINGTON(STA_C)	0	1	14	ANTELOPE	0	3	2
HARBOR(STA_Q)	1	3	6	BALLEY	0	2	1
HARBOR5G	0	1	2	MOOR_PARK	0	2	2
EAGLE_ROCK	0	2	3	ORMOND_BEACH	0	1	2
PARDEE	0	1	2	SANTA_CLARA	0	1	2
SAUGUS	0	2	1	MANDALAY	0	1	2

Disabled Lines

FSubstation	TSubstation	FNode	Tnode
GRAMERCY	CENTURY	10014	10069
GRAMERCY	FAIRFAX	10014	10076
GRAMERCY	TAP1&TAP2	10014	10095
GRAMERCY	CENTURY	10015	10069
GRAMERCY	FAIRFAX	10015	10076
GRAMERCY	TAP1&TAP2	10015	10096
HALLADLE	TAP1&TAP2	10016	10095
HALLADLE	TAP1&TAP2	10016	10096
•			
· .			
RIVER	ST.JOHN	10063	10068
RIVER	VELASCO	10063	10080
CENTURY	CENTURY	10070	10069
CENTURY	CENTURY	10071	10069
CENTURY	CENTURY	10072	10069
CENTURY	CENTURY	10072	10069
CENTURY	WILLINGTON	10069	10073
CENTURY	WILLINGTON	10069	10074
LAGUNA_BELL	LAGUNA_BELL	34117	34274
LONG_BEACH	LONG_BEACH	34119	34216
LONG_BEACH	LONG_BEACH	34119	34217
LONG_BEACH	LONG_BEACH	34119	34228
LONG_BEACH	LONG_BEACH	34119	34229
LONG_BEACH	LONG_BEACH	34119	34230
LONG_BEACH	LONG_BEACH	34119	34234
LONG_BEACH	LIGHTHIPE	34120	34126
LONG_BEACH	LONG_BEACH	34120	34231
LONG_BEACH	LONG_BEACH	34120	34232
LONG_BEACH	LONG_BEACH	34120	34233

Annual Probability of Exceedance for Households without Power (enlarged view) Risk Curve

Fragility Curves for Transformers

Base Isolation System Utilized in NCREE/UCI/Bridgestone Tests

Annual Probability of Exceedance for Households without Power (enlarged view) Risk Curve

Simulation of Seismic Performance of Power Systems

Repair/Replacement Curves

LADWP's Power Supply; Immediately after Earthquake

LADWP's Power Restoration; 6 Hours after Earthquake

LADWP's Power Restoration; 12 Hours after Earthquake

LADWP's Power Restoration; 24 Hour after Earthquake

LADWP's Power System Restoration

28

Simulation of Tsunamis and Their Consequences

⊠USGS

Off the west coast of northern Sumatra Sunday, Dec.26 at 07:58AM, LT Magnitude 9.0 Location : 3.3N, 95.9E Depth : 30 Km

Simulation by Professor Koshimura, Tohoku University, Japan

The forth largest earthquake in the world since 1900 Almost 300,000 people were killed or still missing

Model Validation with Altimetry Data

1995 Kobe Earthquake

Loss estimated at \$150 billion (\$100 billion in infrastructure and \$50 billion in economic disruption"). http://www.rms.com/Publications/KobeRetro.pdf

Container Terminal System

Warehouse / management building

Numerical Simulation

- Modeling of the quay wall
 - FLAC (Itasca, 2005)
 - Dynamic analysis for a reference structure (PC1, Kobe)

Digital Simulation of Stochastic Field (Muti-Dimensional and Multi-Variate) by Spectral Representation Method

Excess pore pressure ratio with respect to initial effective vertical stress) m

Deterministic analysis - average values of soil properties

Monte Carlo simulations - stochastic input parameters, using four sample functions of a stochastic field with characteristics estimaded from field data analysis

Prevost, Deodatis & Popescu³⁵

Numerical Simulation

* Displcement time histories of the upper seaside corner of the caisson

Problem in Ship berthing Crane Operation

Under homogeneous soil property

Field observation 2.55 to 2.80m in the horizontal direction 1.13 to 1.41m vertical settlements

Effect of Soil Non-homogeneity

- Considerable variability in seismic response
 - Identical configuration, located at the same site, with similar seismic intensity and similar soil conditions
 - > experienced different degrees of damage

(a) PL 13 berth Two identical caissons sitting next to each other showing different degrees of damage (Port Island, Kobe)

37

Time histories of horizontal displacement for 130 cases of backfill soil property realizations

Damage Level

□ Damage state proposed by PIANC(2001)

Based on Serviceability and Structural damage modes

Leve	el of Damage	Degree	Degree	DegreeIII	DegreeIV
Gravity Wall	Normalized Residual Horizontal displ.	~1.5%	1.5~5%	5~10%	10%~
Wall	Residual tilting	~3°	3~5 °	5~8 °	8 °~
Apron	Differential settlement	~0.1m	N/A	N/A	N/A

Table	1.	Proposed	damaae	criteria	for	aravity	auay	walls
				••••••		9	/	

Highest damage degree among different criteria is the final result of the evaluation.

Fragility Analysis

□ Fragility curves obtained from analysis

Comparison between no-spatial variation / variation

 $P(DM \ge d \mid IM = PGA)$

Pile Supported Wharf

Typical structure

41

Pile supported wharf : damage state during Kobe EQ

Cross section of a pile-supported wharf at Takahama Wharf, Kobe Por and damage during the Great Hanshin earthquake of 1995.

Pile Supported Wharf

Structure Discretization

Analysis results

Damage Level

□ Damage state proposed by PIANC(2001)

Based on Serviceability and Structural damage modes

Table. Proposed damage criteria for pile-supported wharf

Leve	el of Damage	Degree	Degree	DegreeIII	DegreeIV
Pile &	Differential Settlement	~0.1m	0.1-0.3m	N/A	N/A
Deck	Peak response of pile	elastic	No residual deform	repairable	Plastic hinge
Dike/ slope	Normalized Residual Horizontal displ.	~1.5%	1.5~5%	5~10%	10%~

Fragility Curves

40

FLAC

- FLAC is a two-dimensional explicit Finite difference program for engineering mechanics computation.
- FLAC simulates the behavior of structures built of soil, rock or other materials that may undergo plastic flow when their yield limits are reached.
- Materials are represented by elements, or zones, which form a grid that is adjusted by the user to fit the shape of the object to be modeled.
- Each element behaves according to a prescribed linear or nonlinear stress/strain law in response to the applied forces or boundary restraints.
- The explicit, Lagrangian calculation scheme and the mixeddiscretization zoning technique used in FLAC ensure that plastic collapse and flow are modeled very accurately.

Selected References

 (Zhou, Y., S. Banerjee and M. Shinozuka, "Socio-economic effect of seismic retrofit of bridges for highway transportation networks: A pilot study", Journal of Structure and Infrastructure Engineering, 2009, Published Online)

• Shinozuka, M., S. Banerjee and S.-H.Kim, "Fragility considerations in highway bridge design", Technical Report MCEER-07-0023, December 14, 2007

• (Ung Jin Na, Samit Ray Chaudhuri and Masanobu Shinozuka, "Probabilistic assessment for seismic performance of port structures", Soil Dynamics and Earthquake Engineering, Volume 28, Issue 2, February 2008, Pages 147-158.

• Na, U.J., Ray Chaudhuri, S., and Shinozuka, M. (2008). "Effects of spatial variation of soil properties on seismic performance of port structures", Soil Dynamic and Earthquake Engineering, Available online.

 Na U.J., Shinozuka M. (2008), "Simulation-based seismic loss estimation of seaport transportation system", Reliability Engineering and System Safety (available online).

Conclusions and Future Study

- Improved models for each contributing factor, in particular, system restoration process is needed
- Better quantification of uncertainty associated with each contributing factor is needed
- Performance definitions depending on stakeholders

Contributors

Samit Ray Chaudhuri, Post-Doctoral Researcher Youwei Zhou¹, Graduate Research Assistant Sang-Hoon Kim¹, Post-Doctoral Researcher Yuko Murachi¹, Visiting Researcher Swagata Banerjee¹, Graduate Research Assistant Sunbin Cho², Research Engineer Howard Chung², Research Engineer

¹ Department of Civil and Environmental Engineering University of California, Irvine

² ImageCat, Inc.

Acknowledgement for Support

- Multidisciplinary Center for Earthquake Engineering Research (MCEER)
- California Department of Transportation (Caltrans)
- National Science Foundation (NSF)
- Federal Highway Administration (FHWA)

Parameters	Replaced soil	Reclaimed soil	Clay	Foundation gravel and Back-filled gravel
Density	1.6	1.6	1.7	1.8
Shear Modulus (KPa)	5.8E4	7.9E4	7.5E4	9.9E4
Poisson's ratio	0.3	0.3	0.3	0.3
Friction angle (°)	37	36	30	40
Void ratio	0.5	0.5	0.64	0.69

Material parameters of the soil layers considered in this study

Annual Probability of Exceedance for Households without Power (enlarged view) Risk Curve

