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Why We Must Model I

Nature spontaneously organizes
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Emergent
     structures
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Why We Must Model 2
Engineered systems spontaneously organize

Internet route flapping
Power-law Internet organization
Financial markets crash
Power grids fail spectacularly
Social pattern formation on the web
...
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And so ...
Problem:
    Emergent structures not given directly by the
                system coordinates or
                governing equations of motion

Consequence:
     Each system needs its own explanatory basis
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Why we must Model 3
Fundamental: Mathematics of Intrinsic Randomness

Nonlinear dynamical systems [Kolmogorov 1958]:
         Chaotic systems: Shannon entropy
 
Kolmogorov-Chaitin complexity of Data [1963]:

Size of shortest Turing Machine Program  to predict Data

KC complexity = f(Shannon entropy) [Brudno 1978] :

hµ > 0

|Program| ∝ ehµ|Data|
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Exponential Increase in Prediction Resources

Prediction Horizon T

|Compute time| ∝ eT

|Measurements| ∝ eT

Accuracy ∝ e−T
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Consequence
No short cuts!

No closed-form solutions
No computational speed-ups
Must compute full trajectory

Right representation is critical for reducing the 
prediction error as far as possible (but no further!)
Cannot estimate uncertainty unless you know the 
right model.
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Fundamental in Complex Systems!
Each nonlinear system requires its own representation

Selecting balance between ascribing structure or 
noise to a measurement depends on representation

Fundamental issue: Theory building

Subsidiary issue:

       Statistical fluctuations due to finite data sample

       (This is NOT a talk about machine learning.)
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Learning a Model

Problem: Learn from Observations

The world behaves:

Given                   ,  agent learns model:

                     States       and Dynamic

Pattern Discovery:

    Learn the world’s hidden states

R

past future

↔
X=

←
X

→
X

Pr(R|
←
X)

JPC & K. Young, Inferring Statistical Complexity, Physical Review Letters 63 (1989) 105-108.
C. R. Shalizi & JPC, Journal Statistical Physics 104 (2001) 817-879.

Pr(
←
X,
→
X)
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Learning a Model ...

Causal shielding:

Dynamics of learning:

     Search in the space of models: R ∈M

Pr(
←
X
→
X) = Pr(

←
X |R)Pr(

→
X |R)
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Causal shielding objective function

min
Pr(R|

←
X)

(
I[
←
X;R] + βI[

←
X;
→
X |R]

)

Info states contain
about histories

Reduce info history
has about future

Model: Map from
histories to states

β ∼ 1/T

Learning a Model ...
(Susanne Still, Chris Ellison, & JPC)

arxiv.org: 0708.0654 [physics.gen-ph] & 0708.1580[cs.IT]

Structure/Noise Design Control:
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Learning a Model ...

Optimal states                    are Gibbs states:

where

Pr(R|
←
X)

Propt(R|
←
X) =

Pr(R)

Z(
←
X,β)

e−βE(R,
←
X)

E(R,
←
X) = D

(
Pr(
→
X |

←
X)||Pr(

→
X |R)

)

Pr(
→
X |R) =

1
Pr(R)

∑

←
X

Pr(
→
X |

←
X)Pr(R|

←
X)Pr(

←
X)

Pr(R) =
∑

←
X

Pr(R|
←
X)Pr(

←
X)
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Learning a Model ...

Solve these equations self-consistently

    (Analytical in special cases; numerical generally)

Parametrized family of models:

Structure or Noise?

         trades-off model size against prediction error

                          Structure versus Noise

Pr(R|
←
X)Rβ

β

:
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What Do Solutions Mean?
Causal Models

Causal architecture given by   -Machine     :

Optimal predictor:

Minimal size (within optimal predictors     ):

Unique (within min, opt predictors)

ε

JPC & K. Young, Inferring Statistical Complexity, Physical Review Letters 63 (1989) 105-108.
C. R. Shalizi & JPC, Journal Statistical Physics 104 (2001) 817-879.

M

hµ(M) ≤ hµ(R)

R̂

Cµ(M) ≤ Cµ(R̂)
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Theorem: Low-temperature limit

        Recover   -Machine:

 Conclusion:

       At given prediction error

                 is best causal approximate.

β →∞

ε

Learning a Model ...

Rβ →M

Rβ
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Learning a Model ...

H[Past]

E = I[Past;Future]

Slope = inverse T = Beta

Causal Rate Distortion Curve

I[Past;Rivals]

I[Past;Future|Rivals]
          = E - I[Future;Rivals]

IID limit

!M limit

0
0

R(D)

Distortion

In theory

Optimally balance structure & error
At each level     of approximationβ
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Learning a Model ...
Analytical cases

I[←X ;R]

0
0 I[→X ; ←X R]|

1 state

Feasible

1 state

E

Cμ Predictively Reversible:

(e.g., periodic)

P(
→
x | ←x) = δ→

x ,f(
←
x )

All IID processes:

P(
→
x | ←x) = P(

→
x)
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Learning a Model ...

I[→X 2;←X 5R]

I[← X5 ;R]
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In practice: Learn an oo-state world (SNS: “simple nondeterminstic source”)

Optimally balance structure & error
At each level     of approximationβ
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Learning a Model ...

Causal compressibility: Shape of RD curve

Benefit of choosing smaller model for 
loss in predictability

Deviation from straight-line RD curve

IID: No

Predictively reversible: No

SNS: Yes
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Conclusions
Causal shielding principle leads to

Process’s organization:   -Machine
Family of best approximations to   -M

Structure or Noise?
Cannot estimate uncertainty until 
you know structure.
First-principle distinction
Principled trade-off

ε

ε
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Thanks!

All papers online at the
Computational Mechanics Archive

http://cse.ucdavis.edu/~cmg/
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