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Part 1

Evaluating probabilistic 
forecasts with scoring rules



Background and 
Motivation

How to train/tune/evaluate a 
probabilistic model?



Training a probabilistic model
The situation

- Many ground truth examples
- I’m not going into Bayesian modeling here

- Must learn many parameters in a complex 
model

- Need a scalable method

My personal work

- Weather forecasts

Loss functions will be used 
with SGD



Evaluating a probabilistic model
The setup

- Given many forecasts {Xn} from model P 
and ground truth {Yn}

We want to

- Give a score to P that is minimized when

X and Y have the same distribution

- Give interpretable evaluations

Some loss functions double as 
eval functions – some don’t



Maximum 
likelihood and its 
shortcomings

Maximum likelihood for logistic 
and linear regression



Example 1: Logistic regression
Pros

- Maximum likelihood is an efficient way to 
estimate θ

- Works well with stochastic gradient 
descent

Cons

- Doesn’t work for continuous variables
- Loss values are often difficult to interpret



Cross Entropy can give uninterpretable values
Suppose we have models P and Q

- P[Thunderstorm] = 0.001
- Q[Thunderstorm] = 0

From a consumer’s perspective they are pretty 
similar

If there is a thunderstorm (Y=1)

● -Log(P[Y]) = 3
● -Log(Q[Y]) = infinity



Example 2: Linear regression
Pros

- Maximum likelihood is an efficient way to 
estimate θ

- Works well with stochastic gradient 
descent

- Squared error is easy to interpret

Cons

- Linear model often insufficient
- Additive noise often insufficient



Example 3: Deep Neural Network and Mean Square Error

Pros

- Maximum likelihood is an efficient way to 
estimate θ

- Works well with stochastic gradient 
descent

- Squared error is easy to interpret
- Often results in X ≈ Y

Cons

- The generative model gives silly samples
- If Y has inherent uncertainty, results in 

blurry forecasts



Alternative explanation:

If a storm may be here or there…

you minimize MSE by forecasting a blurry 
cloud everywhere

Mean squared error
…why it favors blurry forecasts

“Ground truth”
Traditional 

physics-based
NeuralGCM

(deterministic)
ML-model, 

trained on MSE Common misleading practice:
- train to minimize MSE
- show better RMSE than a 

physics-based model
- claim to be SOTA



Ways to approximate a likelihood

● Variational autoencoder variants [C]
● Normalizing flow based models [P]
● Diffusion models [S, GC]

Approximate maximum likelihood models

Difficulty:
How to approximate this 
integral in a realistic model?

https://arxiv.org/pdf/2110.13549.pdf
https://jmlr.org/papers/v22/19-1028.html
https://arxiv.org/abs/2101.09258
https://arxiv.org/abs/2312.15796


Asymptotic efficiency of the MLE

The maximum likelihood estimator 
(asymptotically, as N → infinity) achieves 
equality in this bound [notes].

https://ocw.mit.edu/courses/18-443-statistics-for-applications-fall-2006/resources/lecture3/


Maximum likelihood doesn’t “respect the metric”

Temperature

W
in

d 
S

pe
ed

Forecast distribution support

Observation Y
⇒ -Log p(Y | θ) ≈ ∞

Would prefer a small 
penalty



Proper Scoring 
Rules



Formal definition



Logarithmic Score (Maximum likelihood)

Pros

● Asymptotically efficient
○ (asymptotically) no parameter estimator can 

have lower variance [notes]

● Every local strictly proper scoring rule is 
equivalent to logarithmic score.

○ local = depends on P only at observed 
points

Cons

● Requires the density p(x | θ),

cannot work if you only have samples

X ᯈ p

https://ocw.mit.edu/courses/18-443-statistics-for-applications-fall-2006/resources/lecture3/


Non-local scores from losses



Continuously Ranked Probability Score (CRPS)
● Strictly proper

⇒ X ∼ Y is the unique 
minimizer

● Generalizes MAE
● Does not require 

density p(x)!

● Strictly proper
⇒ any X with correct 
marginals is a minimizer

● Generalizes MAE
● We let {Xn} be 

components in spatial & 
spectral basis [GR]

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf


Energy Score (ES)

● Strictly proper
○ …but the signal in 

correlations is tiny
● Generalizes RMSE
● Rotationally invariant

○ can use spectral 
basis

● Still strictly proper if we 
rescale the norm

● Barely penalizes 
incorrect correlations

[SZ]

https://www.sciencedirect.com/science/article/abs/pii/S0378375813000633


Kernel scores



Maximum Mean Discrepancy (MMDs)

A parallel set of literature exists analyzing MMDs  [G12]

https://jmlr.csail.mit.edu/papers/v13/gretton12a.html


Brier score for binary tail events
Strictly proper for the tail event Y > τ



Subpar 😈 scores  (guess why)
Proper but not strict
Any X with the same mean as Y 
is a minimizer

Not proper
X = E[Y] (deterministic) is the 
minimizer

Strictly proper but not stable
p(y) ∼ eN has huge variance

Not proper (& unstable)
Prefers distributions peaked near 
the modes [GR]

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf


What compromises do these scores make?

Since our model is not perfect, we do not 
achieve the minimum.

- Given these restrictions, what distribution 
will be chosen as the minimizer?

More study needed here



Correlated 2D Gaussian
Y ~ correlated 2D Gaussian

X ~ uncorrelated 2D Gaussian with variance σ².

Which σ gives the best score?

First choice for each score

Second choice for each 
score



Bimodal Normal



Signal to Noise Ratio



Signal to noise ratio test

Setup

● Fit a 1000 dimensional Gaussian
● Sweep parameter & compute scores
● SNR = (best_score - score) / stddev
● # Samples needed ∝ 1 / SNR2

Results

● Energy (2 ensemble) has SNR worse than 
5x lower

⇒ Needs > 25x as many samples

⇒ Needs > 50x as much compute

Warning: This used an older computation of SNR!



Tuning a probabilistic model
The setup

- Your team is developing a probabilistic 
model

- You have many many forecasts {Xn} and 
ground truth examples {Yn}

We want to

- Help scientists answer, “did this change 
help or hurt?”

In my experience, you end up

- Running giant evaluations on a cluster
- Output HTML summaries



Cluster jobs using Beam
Beam

- Allows robust use of 1000’s of machines
- Is somewhat efficient 
- Provides somewhat sane job monitoring

Maintaining Beam pipelines may not seem 
“Glorious”, but…

- if you run the evals you’re using stats to 
influence decisions

- building models is often “random tweak, 
train, check”



HTML Output : Page 1



HTML Output : Page 2



HTML Output : Page 3



Part 2

ML weather forecasting
and NeuralGCM



Outline
ML weather prediction is at state of the art

NeuralGCM: Neural network augmented (differentiable) 
fluid solvers for weather prediction

The math behind probabilistic NeuralGCM

https://arxiv.org/abs/2311.07222


ML Weather 
forecast 
overview
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Initial 
conditions

Raw future 
forecast

Observations

Forward model

Data assimilation
(physics + Bayes)

Weather
Report

Post processing
(mostly ML for 

many years now)

ML is used in a weather forecasting System

Recent headlines in ML-forecasting are 
primarily Global Circulation Models



GCM = Global Circulation Model

Global humidity

Models global flow of humidity, temperature, and wind



Question: What training data is used for ML forward 
models?

Answer: Reanalysis (ECMWF)

- Retrospective reconstruction 
of weather

- Dense, includes all 
variables of interest

- Done with traditional “pure 
physics” models

Q: How can ML be “better than 
existing physics models” if the 
training data comes from physics 
models?

A: ML can forecast future 
weather that is closer to the 
retrospective reconstruction

A: ML forecasts are made orders 
of magnitude faster



NeuralGCM
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Open source
Dycore: https://github.com/google-research/dinosaur
Model:   https://github.com/google-research/neuralgcm
Paper: Neural General Circulation Models

https://arxiv.org/abs/2311.07222
https://github.com/google-research/neuralgcm
https://arxiv.org/abs/2311.07222


Traditional Global Circulation Models
Traditional GCMs rely on too many hand-tuned parameters & 
empirical equations



NeuralGCM

Solve dynamical equations on TPUs Learn “physics suite” from data

Using ML to learn physical tendencies (rates of change)



Conventional hybrid models train an ML model “offline”

Neural 
network

Dynamical 
core

Train neural-net over single time step

Diagnose the missing 
physics and build a 

training data set



Neural 
network

Dynamical 
core Neural 

network

Dynamical 
core Neural 

network

Dynamical 
core

…

Inference
(many time steps)��

Training
(one time step)

dycore and NN do not interact

Conventional hybrid models train an ML model “offline”



Differentiable
dynamical 

core

Differentiable
dynamical 

core

Differentiable hybrid models can be trained end-to-end for “online” performance

Neural 
network

Differentiable
dynamical 

core Neural 
network

Neural 
network

Training & inference
(many time steps)

Dycore and NN interact

…

��

Written in JAX
(or PyTorch/Julia)



Forecasts are realistic

Option A Option B Option C

Total column water, 0-15 days

One is ground truth, the other two NeuralGCM ensemble members



NeuralGCM was the first ML model to beat ECMWF’s 
ensemble on RMSE, Bias, CRPS

New model (GenCast) also beats ECMWF’s ensembleCaveat: All ML models are much lower resolution

https://arxiv.org/abs/2312.15796


Ensembles capture uncertainty
Ensemble forecasts a realistic range cyclone tracks

→ time →

E
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m
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NeuralGCM near-term climate forecasts also have 
realistic distributions of tropical cyclones



JAX, XLA, and TPUs

JAX (Python) code          –                XLA compiled          –                                runs on TPUs



Where does the speedup come from?
ECMWF HRES

- 9 km resolution
- 15 day simulation

- 52 minutes on 64 x 128 core CPUs

NeuralGCM

- 70 km resolution
- 15 day simulation

- 5.4 minutes on 1 TPU  ($1 / hr)
- can easily increase number of TPUs for an 

ensemble

Scaling the 70 km → 9 km would naively 
require ≈ 73 more TPUs

- this scaling may not actually work

9 km is not necessary

- small-scale phenomena result in learnable 
patterns at larger scales



The math behind probabilistic 
NeuralGCM
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Training generative models with scoring rules



Start with K≈10 Gaussian random fields (Zt
(1), …, Zt

(K)), 
with

● correlation lengths (λ1, …, λK)
● correlation times (τ1, …, τK)

The network learns to transform random fields

The network learns to transform the random fields

The field parameters {λι, τi} are learned as well



What loss function will 
encourage proper use 
of the random fields?



Alternative explanation:

If a storm may be here or there…

you minimize MSE by forecasting a blurry 
cloud everywhere

Mean squared error
…why it favors blurry forecasts

“Ground truth”
Traditional 

physics-based
NeuralGCM

(deterministic)
ML-model, 

trained on MSE Common misleading practice:
- train to minimize MSE
- show better RMSE than a 

physics-based model
- claim to be SOTA



Generative-only + scoring rule
No likelihood 
estimate!

Z, Z′ X, X′

Y

ℒ(X, X′, Y)
θ ← θ - h ∇θℒ

NeuralGCM

Random Fields Forecasts

Ground Truth

θ

Network weights



Continuously Ranked Probability Score (CRPS)
● Strictly proper

⇒ X ∼ Y is the unique 
minimizer

● Generalizes MAE

● Strictly proper
⇒ any X with correct 
marginals is a minimizer

● Generalizes MAE
● We let {Xn} be 

components in spatial & 
spectral basis [GR]

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf


 How we trained with CRPS loss

Repeat with a new 
minibatch (SGD)



Learn more about NeuralGCM

github.com/google-research/neuralgcm nature.com/articles/s41586..

Read the paper Run the open source code

https://github.com/google-research/neuralgcm
https://www.nature.com/articles/s41586-024-07744-y


Part 3

JAX and JAX-CFD live tutorial

Using this colab notebook

https://colab.research.google.com/drive/1LAiyBMhG6wuS6y6ckEG8t2YXqNw-PSxu?usp=sharing


Thank You!
Please send questions to:  langmore@google.com
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Appendix



We train a hierarchy of models at different 
resolutions

350,000 sim days / day
1 day on 16 TPUs

We also train both deterministic & stochastic models (~2x more expensive)

69,000 sim days / day
1 week on 16 TPUs

7,300 sim days / day
3 weeks on 256 TPUs

(16x model parallelism)

Inference:
Training:



Our dynamical core solves the moist hydrostatic 
primitive equations with spectral methods

Written in JAX and runs fast on 
Google TPUs (transforms use 
24 bit precision matmul)

Up to 16x model 
parallelism

z

x

y



Our physics is a fully-connected neural net that acts 
on a single vertical column of the atmosphere

Features:
state variables

spatial gradients
incident solar radiation

sea surface temp
sea ice mask

surface embedding

Predictions:
ΔT
Δu
Δv 

Δqvapor
Δqliquid
ΔqiceNN with residual connections

Learned Physics



Deterministic Neural GCM loss terms
1. Squared error with spatial filtering by lead-time
2. Spectral loss
3. Bias loss

0 hours 24 hours 48 hours 72 hours



How differentiating simulations can go wrong: part 2

Problem: Storing every intermediate 
result can use a ridiculous amount of 
memory.

Solution: Gradient checkpointing 
(i.e., jax.remat)

x(t) x(t+1)Advance 
one step

Repeat N=1e6 times:

O(N log N) compute
O(log N) memory

O(N) compute
O(N) memory


