
From Scoring Rules to Probabilistic ML
Forecasting

Ian Langmore UQ Summer School
USC

August 7, 2024

Acknowledgments: the extended NeuralGCM team

Dmitrii
Kochkov

Peter
Norgaard

Ian
Langmore

Janni
Yuval

Stephan
Hoyer

Griffin
Mooers

Jamie
Smith

Michael
Brenner

James
Lottes

Stephan
Rasp

Peter
Battaglia

Alvaro
Sanchez-
Gonzalez

Matthew
Willson

Peter
Düben

Sam
Hatfield

Milan
Klӧwer

Outline
Part 1: Evaluating probabilistic forecasts with scoring rules

Part 2: ML weather forecasting and NeuralGCM

Part 3: JAX and JAX-CFD live tutorial

Part 1

Evaluating probabilistic
forecasts with scoring rules

Background and
Motivation

How to train/tune/evaluate a
probabilistic model?

Training a probabilistic model
The situation

- Many ground truth examples
- I’m not going into Bayesian modeling here

- Must learn many parameters in a complex
model

- Need a scalable method

My personal work

- Weather forecasts

Loss functions will be used
with SGD

Evaluating a probabilistic model
The setup

- Given many forecasts {Xn} from model P
and ground truth {Yn}

We want to

- Give a score to P that is minimized when

X and Y have the same distribution

- Give interpretable evaluations

Some loss functions double as
eval functions – some don’t

Maximum
likelihood and its
shortcomings

Maximum likelihood for logistic
and linear regression

Example 1: Logistic regression
Pros

- Maximum likelihood is an efficient way to
estimate θ

- Works well with stochastic gradient
descent

Cons

- Doesn’t work for continuous variables
- Loss values are often difficult to interpret

Cross Entropy can give uninterpretable values
Suppose we have models P and Q

- P[Thunderstorm] = 0.001
- Q[Thunderstorm] = 0

From a consumer’s perspective they are pretty
similar

If there is a thunderstorm (Y=1)

● -Log(P[Y]) = 3
● -Log(Q[Y]) = infinity

Example 2: Linear regression
Pros

- Maximum likelihood is an efficient way to
estimate θ

- Works well with stochastic gradient
descent

- Squared error is easy to interpret

Cons

- Linear model often insufficient
- Additive noise often insufficient

Example 3: Deep Neural Network and Mean Square Error

Pros

- Maximum likelihood is an efficient way to
estimate θ

- Works well with stochastic gradient
descent

- Squared error is easy to interpret
- Often results in X ≈ Y

Cons

- The generative model gives silly samples
- If Y has inherent uncertainty, results in

blurry forecasts

Alternative explanation:

If a storm may be here or there…

you minimize MSE by forecasting a blurry
cloud everywhere

Mean squared error
…why it favors blurry forecasts

“Ground truth”
Traditional

physics-based
NeuralGCM

(deterministic)
ML-model,

trained on MSE Common misleading practice:
- train to minimize MSE
- show better RMSE than a

physics-based model
- claim to be SOTA

Ways to approximate a likelihood

● Variational autoencoder variants [C]
● Normalizing flow based models [P]
● Diffusion models [S, GC]

Approximate maximum likelihood models

Difficulty:
How to approximate this
integral in a realistic model?

https://arxiv.org/pdf/2110.13549.pdf
https://jmlr.org/papers/v22/19-1028.html
https://arxiv.org/abs/2101.09258
https://arxiv.org/abs/2312.15796

Asymptotic efficiency of the MLE

The maximum likelihood estimator
(asymptotically, as N → infinity) achieves
equality in this bound [notes].

https://ocw.mit.edu/courses/18-443-statistics-for-applications-fall-2006/resources/lecture3/

Maximum likelihood doesn’t “respect the metric”

Temperature

W
in

d
S

pe
ed

Forecast distribution support

Observation Y
⇒ -Log p(Y | θ) ≈ ∞

Would prefer a small
penalty

Proper Scoring
Rules

Formal definition

Logarithmic Score (Maximum likelihood)

Pros

● Asymptotically efficient
○ (asymptotically) no parameter estimator can

have lower variance [notes]

● Every local strictly proper scoring rule is
equivalent to logarithmic score.

○ local = depends on P only at observed
points

Cons

● Requires the density p(x | θ),

cannot work if you only have samples

X ᯈ p

https://ocw.mit.edu/courses/18-443-statistics-for-applications-fall-2006/resources/lecture3/

Non-local scores from losses

Continuously Ranked Probability Score (CRPS)
● Strictly proper

⇒ X ∼ Y is the unique
minimizer

● Generalizes MAE
● Does not require

density p(x)!

● Strictly proper
⇒ any X with correct
marginals is a minimizer

● Generalizes MAE
● We let {Xn} be

components in spatial &
spectral basis [GR]

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf

Energy Score (ES)

● Strictly proper
○ …but the signal in

correlations is tiny
● Generalizes RMSE
● Rotationally invariant

○ can use spectral
basis

● Still strictly proper if we
rescale the norm

● Barely penalizes
incorrect correlations

[SZ]

https://www.sciencedirect.com/science/article/abs/pii/S0378375813000633

Kernel scores

Maximum Mean Discrepancy (MMDs)

A parallel set of literature exists analyzing MMDs [G12]

https://jmlr.csail.mit.edu/papers/v13/gretton12a.html

Brier score for binary tail events
Strictly proper for the tail event Y > τ

Subpar 😈 scores (guess why)
Proper but not strict
Any X with the same mean as Y
is a minimizer

Not proper
X = E[Y] (deterministic) is the
minimizer

Strictly proper but not stable
p(y) ∼ eN has huge variance

Not proper (& unstable)
Prefers distributions peaked near
the modes [GR]

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf

What compromises do these scores make?

Since our model is not perfect, we do not
achieve the minimum.

- Given these restrictions, what distribution
will be chosen as the minimizer?

More study needed here

Correlated 2D Gaussian
Y ~ correlated 2D Gaussian

X ~ uncorrelated 2D Gaussian with variance σ².

Which σ gives the best score?

First choice for each score

Second choice for each
score

Bimodal Normal

Signal to Noise Ratio

Signal to noise ratio test

Setup

● Fit a 1000 dimensional Gaussian
● Sweep parameter & compute scores
● SNR = (best_score - score) / stddev
● # Samples needed ∝ 1 / SNR2

Results

● Energy (2 ensemble) has SNR worse than
5x lower

⇒ Needs > 25x as many samples

⇒ Needs > 50x as much compute

Warning: This used an older computation of SNR!

Tuning a probabilistic model
The setup

- Your team is developing a probabilistic
model

- You have many many forecasts {Xn} and
ground truth examples {Yn}

We want to

- Help scientists answer, “did this change
help or hurt?”

In my experience, you end up

- Running giant evaluations on a cluster
- Output HTML summaries

Cluster jobs using Beam
Beam

- Allows robust use of 1000’s of machines
- Is somewhat efficient
- Provides somewhat sane job monitoring

Maintaining Beam pipelines may not seem
“Glorious”, but…

- if you run the evals you’re using stats to
influence decisions

- building models is often “random tweak,
train, check”

HTML Output : Page 1

HTML Output : Page 2

HTML Output : Page 3

Part 2

ML weather forecasting
and NeuralGCM

Outline
ML weather prediction is at state of the art

NeuralGCM: Neural network augmented (differentiable)
fluid solvers for weather prediction

The math behind probabilistic NeuralGCM

https://arxiv.org/abs/2311.07222

ML Weather
forecast
overview

39

Initial
conditions

Raw future
forecast

Observations

Forward model

Data assimilation
(physics + Bayes)

Weather
Report

Post processing
(mostly ML for

many years now)

ML is used in a weather forecasting System

Recent headlines in ML-forecasting are
primarily Global Circulation Models

GCM = Global Circulation Model

Global humidity

Models global flow of humidity, temperature, and wind

Question: What training data is used for ML forward
models?

Answer: Reanalysis (ECMWF)

- Retrospective reconstruction
of weather

- Dense, includes all
variables of interest

- Done with traditional “pure
physics” models

Q: How can ML be “better than
existing physics models” if the
training data comes from physics
models?

A: ML can forecast future
weather that is closer to the
retrospective reconstruction

A: ML forecasts are made orders
of magnitude faster

NeuralGCM

43

Open source
Dycore: https://github.com/google-research/dinosaur
Model: https://github.com/google-research/neuralgcm
Paper: Neural General Circulation Models

https://arxiv.org/abs/2311.07222
https://github.com/google-research/neuralgcm
https://arxiv.org/abs/2311.07222

Traditional Global Circulation Models
Traditional GCMs rely on too many hand-tuned parameters &
empirical equations

NeuralGCM

Solve dynamical equations on TPUs Learn “physics suite” from data

Using ML to learn physical tendencies (rates of change)

Conventional hybrid models train an ML model “offline”

Neural
network

Dynamical
core

Train neural-net over single time step

Diagnose the missing
physics and build a

training data set

Neural
network

Dynamical
core Neural

network

Dynamical
core Neural

network

Dynamical
core

…

Inference
(many time steps)��

Training
(one time step)

dycore and NN do not interact

Conventional hybrid models train an ML model “offline”

Differentiable
dynamical

core

Differentiable
dynamical

core

Differentiable hybrid models can be trained end-to-end for “online” performance

Neural
network

Differentiable
dynamical

core Neural
network

Neural
network

Training & inference
(many time steps)

Dycore and NN interact

…

��

Written in JAX
(or PyTorch/Julia)

Forecasts are realistic

Option A Option B Option C

Total column water, 0-15 days

One is ground truth, the other two NeuralGCM ensemble members

NeuralGCM was the first ML model to beat ECMWF’s
ensemble on RMSE, Bias, CRPS

New model (GenCast) also beats ECMWF’s ensembleCaveat: All ML models are much lower resolution

https://arxiv.org/abs/2312.15796

Ensembles capture uncertainty
Ensemble forecasts a realistic range cyclone tracks

→ time →

E
ns

em
bl

e
m

em
be

rs

NeuralGCM near-term climate forecasts also have
realistic distributions of tropical cyclones

JAX, XLA, and TPUs

JAX (Python) code – XLA compiled – runs on TPUs

Where does the speedup come from?
ECMWF HRES

- 9 km resolution
- 15 day simulation

- 52 minutes on 64 x 128 core CPUs

NeuralGCM

- 70 km resolution
- 15 day simulation

- 5.4 minutes on 1 TPU ($1 / hr)
- can easily increase number of TPUs for an

ensemble

Scaling the 70 km → 9 km would naively
require ≈ 73 more TPUs

- this scaling may not actually work

9 km is not necessary

- small-scale phenomena result in learnable
patterns at larger scales

The math behind probabilistic
NeuralGCM

55

Training generative models with scoring rules

Start with K≈10 Gaussian random fields (Zt
(1), …, Zt

(K)),
with

● correlation lengths (λ1, …, λK)
● correlation times (τ1, …, τK)

The network learns to transform random fields

The network learns to transform the random fields

The field parameters {λι, τi} are learned as well

What loss function will
encourage proper use
of the random fields?

Alternative explanation:

If a storm may be here or there…

you minimize MSE by forecasting a blurry
cloud everywhere

Mean squared error
…why it favors blurry forecasts

“Ground truth”
Traditional

physics-based
NeuralGCM

(deterministic)
ML-model,

trained on MSE Common misleading practice:
- train to minimize MSE
- show better RMSE than a

physics-based model
- claim to be SOTA

Generative-only + scoring rule
No likelihood
estimate!

Z, Z′ X, X′

Y

ℒ(X, X′, Y)
θ ← θ - h ∇θℒ

NeuralGCM

Random Fields Forecasts

Ground Truth

θ

Network weights

Continuously Ranked Probability Score (CRPS)
● Strictly proper

⇒ X ∼ Y is the unique
minimizer

● Generalizes MAE

● Strictly proper
⇒ any X with correct
marginals is a minimizer

● Generalizes MAE
● We let {Xn} be

components in spatial &
spectral basis [GR]

https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf

 How we trained with CRPS loss

Repeat with a new
minibatch (SGD)

Learn more about NeuralGCM

github.com/google-research/neuralgcm nature.com/articles/s41586..

Read the paper Run the open source code

https://github.com/google-research/neuralgcm
https://www.nature.com/articles/s41586-024-07744-y

Part 3

JAX and JAX-CFD live tutorial

Using this colab notebook

https://colab.research.google.com/drive/1LAiyBMhG6wuS6y6ckEG8t2YXqNw-PSxu?usp=sharing

Thank You!
Please send questions to: langmore@google.com

References

GenCast: Diffusion based ensemble forecasting for medium-range weather

NeuralGCM: Neural General Circulation Models

P: Normalizing Flows for Probabilistic Modeling and Inference

S: Maximum Likelihood Training of Score-Based Diffusion Models

C: Online Variational Filtering and Parameter Learning

GR: Strictly Proper Scoring Rules, Prediction, and Estimation

Pa: Lecture notes on properties of MLE

SZ: Energy statistics: A class of statistics based on distances

https://arxiv.org/abs/2312.15796
https://arxiv.org/abs/2311.07222
https://jmlr.org/papers/v22/19-1028.html
https://arxiv.org/abs/2101.09258
https://arxiv.org/pdf/2110.13549.pdf
https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf
https://ocw.mit.edu/courses/18-443-statistics-for-applications-fall-2006/resources/lecture3/
https://www.sciencedirect.com/science/article/abs/pii/S0378375813000633

Appendix

We train a hierarchy of models at different
resolutions

350,000 sim days / day
1 day on 16 TPUs

We also train both deterministic & stochastic models (~2x more expensive)

69,000 sim days / day
1 week on 16 TPUs

7,300 sim days / day
3 weeks on 256 TPUs

(16x model parallelism)

Inference:
Training:

Our dynamical core solves the moist hydrostatic
primitive equations with spectral methods

Written in JAX and runs fast on
Google TPUs (transforms use
24 bit precision matmul)

Up to 16x model
parallelism

z

x

y

Our physics is a fully-connected neural net that acts
on a single vertical column of the atmosphere

Features:
state variables

spatial gradients
incident solar radiation

sea surface temp
sea ice mask

surface embedding

Predictions:
ΔT
Δu
Δv

Δqvapor
Δqliquid
ΔqiceNN with residual connections

Learned Physics

Deterministic Neural GCM loss terms
1. Squared error with spatial filtering by lead-time
2. Spectral loss
3. Bias loss

0 hours 24 hours 48 hours 72 hours

How differentiating simulations can go wrong: part 2

Problem: Storing every intermediate
result can use a ridiculous amount of
memory.

Solution: Gradient checkpointing
(i.e., jax.remat)

x(t) x(t+1)Advance
one step

Repeat N=1e6 times:

O(N log N) compute
O(log N) memory

O(N) compute
O(N) memory

