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Outline

Part 1: Evaluating probabilistic forecasts with scoring rules

: ML weather forecasting and NeuralGCM

Part 3: JAX and JAX-CFD live tutorial



Part 1

Evaluating probabilistic
forecasts with scoring rules



Background and
Motivation

How to train/tune/evaluate a
probabilistic model?



Training a probabilistic model

Stochastic gradient descent

The situation

- Many ground truth examples e Ground truth examples {Y;,...,Yn}
- I'm not going into Bayesian modeling here Model parameterized by 6
- Must learn many parameters in a complex
model Possible conditioning covariates {a, . ..,
- Need a scalable method Forecasts {X1,..., Xy}

Loss L(X,Y;0)
My personal work
. Draw random n € {1,..., N}

- Weather f
eather forecasts . Model produces X,, ~ P(X | a,)

Loss functions will be used . Update parameters 6 < 0 — A\VoL(X,,,Y,, | 0)
with SGD . Repeat until convergence




Evaluating a probabilistic model

The setup

- Given many forecasts {X } from model P
and ground truth {Y }

We want to
- Give a score to P that is minimized when
X and Y have the same distribution

- Give interpretable evaluations

Some loss functions double as
eval functions — some don’t




Maximum
likelihood and its
shortcomings

Maximum likelihood for logistic
and linear regression



Example 1: Logistic regression

e ground truth Y € {0, 1} Pros
® covariates & - Maximum likelihood is an efficient way to
o forecast X estimate 0
- Works well with stochastic gradient
RRa= = ;. descent
-F 6—0-@
,C(X, Y | 0) = — log P[X = }/] Cons

=YP[X =1+ (1-Y)P[X = 0]
=Y log (1+e7%) + (1 - Y)log (1 + "),

- Doesn’t work for continuous variables
- Loss values are often difficult to interpret

i, & = s e AR,




Cross Entropy can give uninterpretable values

Suppose we have models P and Q

If there is a thunderstorm (Y=1)
P[Thunderstorm] = 0.001

e -Log(P[Y])=3
Q[Thunderstorm] =0 e -Log(Q[Y]) = infinity

From a consumer’s perspective they are pretty
similar



Example 2: Linear regression

Pros
® ground truth ¥ € (0,1} - Maximum likelihood is an efficient way to
e covariates o estimate 0
. . - Works well with stochastic gradient
e forecast X
descent

- Squared error is easy to interpret

The model implies

Cons

- Linear model often insufficient
- Additive noise often insufficient

L(X,Y|0) = —logp(X|0)
Y —a-6)? 1

1
+ §loga+ 510g27r.
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Example 3: Deep Neural Network and Mean Square Error

Deep neural network and MSE Pros

round truth Y € R? : T : -
IO - Maximum likelihood is an efficient way to

e covariates o estimate 0
e forecast X € R - Works well with stochastic gradient
descent
X = F(a;0) - Squared error is easy to interpret

- Oftenresultsin X=Y

LX,Y|0) =Y - X|*
= ¥ ~ F(a| )|
Cons
The loss is maximum likelihood under the probabilistic model
- The generative model gives silly samples
- If Y has inherent uncertainty, results in

blurry forecasts

p(X|0) = F(a|0) + N(0,0°1).




Mean squared error

Given stochastic ground truth Y and forecast X,

Alternative explanation:
MSE : =E|| X - Y|?

= |[EX — EY|]> 4+ Var {X} + Var {Y'}. If a storm may be here or there...

e MSE is minimized by forecasting X = EY you minimize MSE by forecasting a blurry
cloud everywhere

e Regardless of your forecast, any variance in X only hurts!

Traditional NeuralGCM ML-model,
Ground truth phyS|cs based (determlnlstlc) trained on MSE

Common misleading practice:
- train to minimize MSE
- show better RMSE than a
physics-based model
- claim to be SOTA

Relative humidity
850 hPa [unitless]




Approximate maximum likelihood models

Probabilistic generative model with parameters 6. Ways to approximate a likelihood
Samples are generated via

e \Variational autoencoder variants [C]
e Normalizing flow based models [P]

2. Sample X ~ p(x|Z,0) (the likelihood) e Diffusion models [S, GC]

1. Sample Z ~ p(z|0) (the prior)

Estimate the marginal likelihood

" ) Difficulty:
p(xz|8) = | p(z|0)p(z]z,0)dz, How to approximate this
integral in a realistic model?

>

then estimates 6 by maximum likelihood over data Y = (Y7,

K
6* = argmax logp(Y |0) =~ arg maxz log p(Yi | 0).
k=1



https://arxiv.org/pdf/2110.13549.pdf
https://jmlr.org/papers/v22/19-1028.html
https://arxiv.org/abs/2101.09258
https://arxiv.org/abs/2312.15796

Asymptotic efficiency of the MLE

Suppose. . .

e we have ground truth examples {Y3,..., Yy

e we have model depending on parameter 6 with probability density

p(z]0)
e a parameter estimator 0

Then

where

a o 7 .v
1(6) : = NE { (0—0 log p(} ,9))

[ ? .
= JVE{wlogp(} :0)}

The maximum likelihood estimator
(asymptotically, as N — infinity) achieves
equality in this bound [notes].



https://ocw.mit.edu/courses/18-443-statistics-for-applications-fall-2006/resources/lecture3/

Maximum likelihood doesn’t “respect the metric”

Forecast distribution support

@® ObservationY
= -Log p(Y | 0) ==

Would prefer a small
penalty

Wind Speed

Temperature



Proper Scoring
Rules



Formal definition

Given model P, a scoring rule is a function S(P,-) such that
o if event y ~ @ is seen, the reward is S(P,y)

e The expected reward is

S(P,Q) =Eq {S(P,Y)} = / y)dy ~ — ZSPyn.

S is proper if the true distribution is a minimizer

S(Q,Q) < S(P,Q), for all P.

S is strictly proper if the true distribution is the unique minimizer

S(Q,Q) < S(P,Q), for all P # Q.




Logarithmic Score (Maximum likelihood)

Suppose model P has probability density p.
The logarithmic score is

S(P,y) = —logp(y | 0).

This gives maximum likelihood estimation

N
o1
Orrr, = argmin —— Zl log p(yn | 0)

/S arg mein Ey {—logp(Y |6)}.

Pros

e Asymptotically efficient
o  (asymptotically) no parameter estimator can
have lower variance [notes]

e Every /ocal strictly proper scoring rule is

equivalent to logarithmic score.
o local = depends on P only at observed
points

Cons
e Requires the density p(x | 6),
cannot work if you only have samples

Xp


https://ocw.mit.edu/courses/18-443-statistics-for-applications-fall-2006/resources/lecture3/

Non-local scores from losses

We will build non-local scores from loss functions £(X,Y).

Rather than. ..

e Writing S(P,y) := Ex {L(X,y)}

e Then minimizing S(P, Q) := Ey {S(P,Y)} via SGD

we simply analyze the “score”

E{L(X,Y)}.



Continuously Ranked Probability Score (CRPS)

For scalar predictions X, X’ and ground truth Y,
1
CRPS=E|X -Y| - §]E‘X — X'|

= /_OO (P[X < y] - P[Y <y])* dy + const.

(0.9}

N

1
CRPS =N} [E;Xn = Y| = SE|X, — X

n—l

1
=E|[X =Yl = SE[X = X[|,.

Strictly proper

= X ~ Y is the unique
minimizer
Generalizes MAE
Does not require
density p(x)!

Striety proper

= any X with correct
marginals is a minimizer
Generalizes MAE

We let {X } be
components in spatial &
spectral basis [GR]


https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf

Energy Score (ES)

In R¥, the energy score is ® Strictly proper
o ..butthe signalin

1 correlations is tiny
ES = ]EHX — YH2 — §]EHX — X/”2- e Generalizes RMSE
e Rotationally invariant
O  can use spectral
F S tw- X o w-Y . b,aSIS .
(w) =K {6 } ; G(w) =K {6 } B e  Still strictly proper if we

rescale the norm

e Barely penalizes

2
ES x / M dw <+ const. incorrect correlations
Ry [|wll Y

[SZ]


https://www.sciencedirect.com/science/article/abs/pii/S0378375813000633

Kernel scores

Given negative definite kernel K (x,y), define a score

E {K(X, o %K(X, X’)} ~ % > (K (X, Y) + K(X), Ya) — K (X, X))}

E.g.

i) = el ol e

1
1+ |z —y|?/o?

K(z,y) =




Maximum Mean Discrepancy (MMDs)

Given function class F, define

MMDIF]: = ?}g(Ex (X))} —Ex {f/(Y)}).

Think of f as distinguishing forecasts X from ground truth Y, as in a
GAN.

If F is the unit ball in the RKHS generated by kernel K (z,y), then

MMDI|F] = E {K(X, y) — %K(X, X) %K(Y, Y’)} .

A parallel set of literature exists analyzing MMDs [G12]



https://jmlr.csail.mit.edu/papers/v13/gretton12a.html

Brier score for binary tail events

Given

Strictly proper for the tail eventY > 1
e Binary tail event Y > 7

e Forecast X

e (possibly estimated) probability p = P[X > 7]

The Brier Score is

BS(r) =E{lp— 1y>.} .

Note that

/BS(T) dp = / |P[X > 7] — Q[Y > 7]|*dt + const
= CRPS + const.




Subpar @ scores (guess why)

Square the norms in the energy score

y 1 .
E|IX - Y| - SE|IX - X'|]
— |E{X} —E{Y}[? + Var {Y}.

Mean square error

EllX —Y|*

= |E{X} —E{Y}|*+ Var {X} + Var {Y'}.

Quadratic score

E {—2])(;/) + /1)(.1;7)2 d.z:} :

Linear score

Proper but not strict
Any X with the same mean as Y
is @ minimizer

Not proper
X = E[Y] (deterministic) is the
minimizer

Strictly proper but not stable
p(y) ~ eN has huge variance

Not proper (& unstable)
Prefers distributions peaked near
the modes [GR]


https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf

What compromises do these scores make?

Since our model is not perfect, we do not
achieve the minimum.

Given these restrictions, what distribution
will be chosen as the minimizer?

More study needed here



Correlated 2D Gaussian

Y ™ correlated 2D Gaussian

X ™ uncorrelated 2D Gaussian with variance o2

Which o gives the best score?

O =N W s

© = N W s
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Bimodal Normal
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Signal to Noise Ratio

Since we only have finite data, so we compute

Y
> L(X,, X, Y,) =E{L(X, X' Y)} + noise.

n=1

Of interest is the signal to noise ratio

5 E{L(X,X"Y)—L(Y,Y V")
SNR . \/Vaf {E {E(Xv le Y) _ 'C(Y7 Yl? Y”)}} .

1/SNR? is approximately the number of samples needed.




Signal to noise ratio test

SNR[Logarithmic] SNR[Energy 1]

Setup parameter
e Fit a 1000 dimensional Gaussian d:me
e Sweep parameter & compute scores 0.896
e SNR = (best_score - score) / stddev
e # Samples needed oc 1/ SNR? 0.844

Results 0.792

0.739
e Energy (2 ensemble) has SNR worse than

5x lower 0.687

= Needs > 25x as many samples 0.635

= Needs > 50x as much compute 0.583

Warning: This used an older computation of SNR! 0.531




Tuning a probabilistic model

The setup :
In my experience, you end up

- Your team is developing a probabilistic

model
- You have many many forecasts {X } and - Running giant evaluations on a cluster
ground truth examples {Yn} - Output HTML summaries
We want to

- Help scientists answer, “did this change
help or hurt?”



Cluster jobs using Beam

The Evolution of Apache Beam

PDF

MapReduce

— Google

 f ApachE -[

sssss BigTable PubSub

Google Cloud
PDF PDF PDF PDF

Millwheel

Figure 1. Evolution of Apache Beam. [Source]

beam

18

Beam

- Allows robust use of 1000’s of machines
- Is somewhat efficient
- Provides somewhat sane job monitoring

Maintaining Beam pipelines may not seem
“Glorious”, but...

- if you run the evals you're using stats to
influence decisions

- building models is often “random tweak,
train, check”



HTML Output : Page 1

2020-01-02 to 2022-11-03 reforecasts summary for xid=116889089, wid=6, training_step=70000, ensemble_size=2

Table of Contents

- Long forecast analysis
+ §.240¢121 orobabilisticmetrics
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Single forecast analysis was skipped

Long forecast analysis
L

Forecasts began between 2019-01-01 and 2019-10.26
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Temperature at 850 hPa (T850) in Northern California _310
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Fraction Finite
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global average temperature at 850 hPa.

NeuralGCM(init_time=2019-01-01T00)
—— NeuralGCM(init_time=2019-10-26T12)
—— NeuralGCM ensemble mean, RMSE=0.28, Spread=0.50
NeuralGCM [0.05, 0.25, 0.75, 0.95] quantiles
~—— Observed
—— Climatology, RMSE=

Temperature (K]

.39
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HTML Output : Page 2
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HTML Output : Page 3
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Part 2

ML weather forecasting
and NeuralGCM



Outline

ML weather prediction is at state of the art

NeuralGCM: Neural network augmented (differentiable)
fluid solvers for weather prediction

The math behind probabilistic Neural GCM


https://arxiv.org/abs/2311.07222

ML Weather
forecast
overview



ML is used in a weather forecasting System

Data assimilation Post processing

(physics + Bayes) (mostly ML for
! many years now)

| p

| .
| Observations 1
I : Initial , Raw future

% ! i, & > Weather

A N \\‘i", | ' forecast Report
: .’::0 - =,

| )\
| N

Forward model

Recent headlines in ML-forecasting are
primarily Global Circulation Models



GCM = Global Circulation Model

Global humidity



Question: What training data is used for ML forward
models?

Q: How can ML be “better than
existing physics models” if the

- Retrospective reconstruction training data comes from physics
of weather models?

Answer: Reanalysis (ECMWF)

A: ML can forecast future
- Done with traditional “pure weather that is closer to the
physics” models retrospective reconstruction

A: ML forecasts are made orders
of magnitude faster



NeuralGCM

Open source

Dycore: https://github.com/google-research/dinosaur
Model: https://github.com/google-research/neuralgcm
Paper: Neural General Circulation Models

43


https://arxiv.org/abs/2311.07222
https://github.com/google-research/neuralgcm
https://arxiv.org/abs/2311.07222

Traditional Global Circulation Models

“Dynamical core”

“Physics suite”
‘c\
O \\
du

1 ( » “‘. X ‘ Non-orographic
7 +kau+;Vzp=0 ; “

wave drag %3 \?} o
t X \j\ \ 2\ N7 03 Chemistry
‘ Long-wave Short-wave CHg Oxidation
ap p radiation \t\ ”r’adiat‘Ion
5 T Ve (oW +——=0

_ ne’ Cloud :‘:“l!k ( ]

| et
Long- waveShort wave heat neatflux

S
() ‘l ‘4
X ) \ Cloud / Subgrid-scale
400 ol tas ) orographic drag
—_— — — = 0 “‘:“‘:“‘ f(
d t C - covgre:c%on A “‘ ‘4‘:4“ i
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3 p Shallow \ \ (( Turbulent diffusion
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= =—pg \T f(*)() A
) 1
aZ ‘0.[. 84 ‘ L { Sensible

A‘ 0 s

LR .l Wind Waves lux

b Surface
Ocean model
N p \
Y Y
Fluid dynamics on the surface of a Many PhD theses
rotating sphere

(100k-1M lines of Fortran)



NeuralGCM

“Dynamical core” “Physics suite”

du 1
E+kau+;Vzp=0




Conventional hybrid models train an ML model “offline”

Train neural-net over single time step

N

Dynamical
core

Neural
network

Diagnose the missing
physics and build a
training data set



Conventional hybrid models train an ML model “offline”

Training
(one time step)
dycore and le\d do not interact

4 N

Dynamical
core

Dynamical
core

Dynamical
core

Neural
network

Neural
network

Neural
network

— Tt+3AL

Inference
(many time steps)



Differentiable hybrid models can be trained end-to-end for “online” performance

Training & inference
(many time steps)
Dycore and NN interact

N
4 N
Differentiable Differentiable Differentiable
dynamical Neural dynamical Neural dynamical Neural
core network core network core network

— Tt+3AL

— T At — — TiioAt —

nin JAX
(or PyTorch/Julia)



Forecasts are realistic

Option A Option B Option C

Total column water, 0-15 days



NeuralGCM was the first ML model to beat ECMWF's
ensemble on RMSE, Bias, CRPS

Geopotential Temperature Specific humidity
@ at 500 hPa at 850 hPa at 700 hPa ®) NeuralGCM-ENS at 10 days ECMWF-ENS at 10 days

15 ”~ o
Lf’//
>

7

tizess

80— ECMWF-HRES //— GraphCast =] ===- ECMWF-ENS
= NeuralGCM-0.7° = Pangu ==== NeuralGCM-ENS
T T T T T T T T T T

c
Pa Spec humidity 700 hPa
RMSE vs climatology [%]

v

|
°
o
3

pec

D

_‘102 - -

-
© v o
o ® &
11

CRPS vs ENS [%.
Spec humidity 700 hPa s,

CRPS vs climatology [%]

a

AY:

WeatherBench 2

Spread-skill ratio
Spread-skill ratio
0000

Spec humidity 700 hPa

T T T T T T T T
1 5 10 15 1 5 10 15

Lead time [days] Lead time [days] Lead time [days] Stephan Rasp et al

| |
5 10 15

Caveat: All ML models are much lower resolution New model (GenCast) lso beats ECMWF's ensemble


https://arxiv.org/abs/2312.15796

Ensembles capture uncertainty

Ensemble forecasts a realistic range cyclone tracks

Ensemble members




NeuralGCM near-term climate forecasts also have
realistic distributions of tropical cyclones

2020 2021
APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR
A

Ay

Ground truth (ERAS) === NeuralGCM




JAX, XLA, and TPUs

JAX (Python) code - XLA compiled — runs on TPUs

XLAHLO

Target-independent
Optimizations & Analyses

import jax

import jax.numpy as jnp XLA HLO

square(x): S SO ‘
return x * x |

: Target-dependent
grad_square = jax.grad(square) | GRS AR !
: Target-specific

Code Generation

print(square(3.), grad square(3.))

XLA Backend

9,0 6.0




Where does the speedup come from?

ECMWF HRES

- 9 km resolution

- 15 day simulation
- 52 minutes on 64 x 128 core CPUs

NeuralGCM

- 70 km resolution

- 15 day simulation
- 5.4 minuteson 1 TPU ($1/hr)
- can easily increase number of TPUs for an
ensemble

Scaling the 70 km — 9 km would naively
require = 73 more TPUs

- this scaling may not actually work

9 km is not necessary

- small-scale phenomena result in learnable
patterns at larger scales



The math behind probabilistic
NeuralGCM



The network learns to transform random fields

Start with K=10 Gaussian random fields (2", ..., Z[)),
with

e correlation lengths (A, ..., A,)

e correlation times (1., ..., T,)

The network learns to transform the random fields

The field parameters {A, 1} are learned as well

ML-tendencies

0X,
dt

/_A_\
S (Xt . V)Xt — VVQXt = \I]<Xt, Zf)




What loss function will
encourage proper use
of the random fields?



Mean squared error

Given stochastic ground truth Y and forecast X,

Alternative explanation:
MSE : =E|| X - Y|?

= |[EX — EY|]> 4+ Var {X} + Var {Y'}. If a storm may be here or there...

e MSE is minimized by forecasting X = EY you minimize MSE by forecasting a blurry
cloud everywhere

e Regardless of your forecast, any variance in X only hurts!

Traditional NeuralGCM ML-model,
Ground truth phyS|cs based (determlnlstlc) trained on MSE

Common misleading practice:
- train to minimize MSE
- show better RMSE than a
physics-based model
- claim to be SOTA

Relative humidity
850 hPa [unitless]




Generative-only + scoring rule

! 3 /

1. Transforms random 7, 7’ into forecasts X, X No likelihood
2. Evaluates a loss based on a proper scoring rule estimate!
3. Takes a gradient step to minimize the loss

| Network weights |

S Y
| Random Fields | | Forecasts |
LX, X', Y)

Z,Z'" > X, X' —»

6«6-hV ¢




Continuously Ranked Probability Score (CRPS)

For scalar predictions X, X’ and ground truth Y, e Strictly proper
1 = X ~ Y is the unique
CRPS =X —Y|— §]E\X — X' minimizer

o0 e Generalizes MAE
= / (P[X <y] - P[Y <y])* dy + const.

— 00

e Striety proper
= any X with correct
marginals is a minimizer

e Generalizes MAE

o Welet{X }be
components in spatial &
spectral basis [GR]

N

1
CRPS =N} [IE|Xn = Y| = SE|X, — X

n—l

1
= BJ|X = Y|l — S| X = X'|.


https://sites.stat.washington.edu/raftery/Research/PDF/Gneiting2007jasa.pdf

How we trained with CRPS loss

Given neural network V¥(-; ), parameterized by 6, ground truth Yj
e Draw random initial perturbation ¢
Initialize forecast X, =Y, + ¢

Initialize random field 2,

Generate forecast X, for 0 <t < N7 by solving Repeat with a new

o, minibatch (SGD)

=+ (X V)X, — VX, = W(X,, Z,;0),
dZ, = —BZ,dZ, + o dW,.

... Similarly for X/, Z.

Update parameters with gradient descent: 6 < 6 — hV,L(0),  ——

where 5 }

N
Z [Han - an“l + ”X;w - YnT‘Il - Han - Xv/le]

n=1




Learn more about NeuralGCM

Read the paper
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NeuralGCM documentation

Overview

The NeuralGCM codebase consists of a handful of different components, suitable for reproducing
and extending results from our paper, Neural General Circulation Models for Weather and Climate:

1. Dynamics: The atmospheric dynamical core is distributed in the separate Dinosaur package.

~

. ML modules: Haiku modules for defining neural network layers.

w

: Pseudo-code for training NeuralGCM models can be found in the reference_code
subdirectory.

4. ML inference: Code for running forecasts with pre-trained models, encapsulated in the
PressureLevelModel class.

o

. Evaluation: Code for evaluating NeuralGCM weather forecasts, along with archived re-forecasts
for 2020, can be found in the WeatherBench? project.

The documentation here focuses mostly on our AP! for inference (i.e., running trained NeuralGCM
atmospheric models), which we believe is the most immediately useful part of the NeuralGCM code
for third parties. Itis also a part of our code that we can commit to supporting in roughly its current
form.

We would love to support training, modifying and fine-tuning NeuralGCM models, but with the
present codebase based on Haiku and Gin this is much trickier than it needs to be. We are currently
(in May 2024) refactoring the modeling code to improve usability - stay tuned!

Contents

github.com/google-research/neuralgcm


https://github.com/google-research/neuralgcm
https://www.nature.com/articles/s41586-024-07744-y

Part 3

JAX and JAX-CFD live tutorial

Using this colab notebook



https://colab.research.google.com/drive/1LAiyBMhG6wuS6y6ckEG8t2YXqNw-PSxu?usp=sharing

Thank You!

Please send questions to: langmore@google.com
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Appendix



We train a hierarchy of models at different
resolutions

We also train both deterministic & stochastic models (~2x more expensive)

TL-63 (2.8°) TL-127 (1.4°) TL-255 (0.7°)

Inference: 350,000 sim days / day 69,000 sim days / day 7,300 sim days / day
Training: 1 day on 16 TPUs 1 week on 16 TPUs 3 weeks on 256 TPUs
(16x model parallelism)



Our dynamical core solves the moist hydrostatic
primitive equations with spectral methods

Written in JAX and runs fast on Up to 16x model
Google TPUs (transforms use parallelism

Dale R. Durran

24 bit precision matmul) S/ /

Numerical Methods

for Fluid Dynamics
With Applications to Geophysics

@ Springer




Our physics is a fully-connected neural net that acts
on a single vertical column of the atmosphere

Learned Physics

Features: Predictions:
state variables AT
Au

spatial gradients

incident solar radiation A M 7 M 7 M "aa —> Av
sea surface temp AQ 00
sea ice mask AQ; g

surface embedding Aq,,
NN with residual connections




Deterministic Neural GCM loss terms

1. Squared error with spatial filtering by lead-time
2. Spectral loss
3. Biasloss

0 hours 24 hours 48 hours 72 hours




How differentiating simulations can go wrong: part 2

Problem: Storing every intermediate Solution: Gradient checkpointing
result can use a ridiculous amount of (i.e., jax.remat)
memory. |
Repeat N=1e6 times: -
x(t) —p| AAVANCE | 41)
one step
O(N) compute O(N log N) compute

O(N) memory O(log N) memory



